
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1988

A microcomputer-based vision system to recognize
and locate partially occluded parts in binary and
gray level images
Volker Peter Petersen
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Industrial Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Petersen, Volker Peter, "A microcomputer-based vision system to recognize and locate partially occluded parts in binary and gray level
images " (1988). Retrospective Theses and Dissertations. 9714.
https://lib.dr.iastate.edu/rtd/9714

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F9714&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F9714&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F9714&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F9714&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F9714&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F9714&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=lib.dr.iastate.edu%2Frtd%2F9714&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/9714?utm_source=lib.dr.iastate.edu%2Frtd%2F9714&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

INFORMATION TO USERS 

The most advanced technology has been used to photo­
graph and reproduce this manuscript from the microfilm 
master. UMI films the original text directly from the copy 
submitted. Thus, some dissertation copies are in typewriter 
face, while others may be from a computer printer. 

In the unlikely event that the author did not send UMI a 
complete manuscript and there are missing pages, these will 
be noted. Also, if unauthorized copyrighted material had to 
be removed, a note will indicate the deletion. 

Oversize materials (e.g., maps, drawings, charts) are re­
produced by sectioning the original, beginning at the upper 
left-hand comer and continuing from left to right in equal 
sections with small overlaps. Each oversize page is available 
as one exposure on a standard 35 mm slide or as a 17" x 23" 
black and white photographic print for an additional charge. 

Photographs included in the original manuscript have been 
reproduced xerographically in this copy. 35 mm slides or 
6" X 9" black and white photographic prints are available for 
any photographs or illustrations appearing in this copy for 
an additional charge. Contect UMI directly to order. 

••UMI 
Accessing the World's Information since 1938 

300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 



www.manaraa.com

I 



www.manaraa.com

Order Number 8826486 

A microcomputer-based vision system to recognize and locate 
partially occluded parts in binary and gray level images 

Petersen, Volker Peter, Ph.D. 

Iowa State University, 1988 

U M I  
SOON.ZeebRd. 
Ann Aibor, MI 48106 



www.manaraa.com

I 



www.manaraa.com

A microcomputer-based vision system to recognize and locate 

partially occluded parts in binary and gray level images 

by 

Volker Peter Petersen 

A Dissertation Submitted to the 

Graduate Faculty in Partial Fulfillment of the 

Requirements for the Degree of 

DOCTOR OF PHILOSOPHY 

Major: Industrial Engineering 

Approved: 

tn Charge of Major Work ^ 

Tor the Major Department 

For the Graduate College 

Iowa State University 
Ames, Iowa 

1988 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



www.manaraa.com

ii 

TABLE OF CONTENTS 
PAGE 

ABSTRACT 1 

STATEMENT OF PROBLEM 2 
Introduction 2 
Objectives of the Research 3 

RELEVANT LITERATURE 8 
Edge Detection 8 
Pattern Recognition Based on Global Features 11 
Pattern Recognition Based on Local Features 12 

Edge approximation 13 
Feature extraction and hypothesis generation ... 14 

Summary 19 

THE VISION SYSTEM 21 
Edge Detection and Identification 22 
Edge Boundary Approximation 24 
Local Feature Definition and Identification 29 
Feature Matching 34 
Hypothesis Generation 40 
Hypothesis Verification 43 
Model Library 45 
Program Flowchart 47 

RESULTS 50 
Recognition of Occluded Parts in Different Test 

Images 52 
Summary 61 

Performance Comparison of Two Pattern Recognition 
Systems 65 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH .... 68 
Conclusions 68 
Suggestions for Further Research 70 

ACKNOWLEDGEMENTS 73 

BIBLIOGRAPHY 74 



www.manaraa.com

LIST OF FIGURES 

PAGE 

FIGURE 1. Information flow through a machine vision 
system 4 

FIGURE 2, Sample part which requires gray level 
image processing to recognize all features . . 6 

FIGURE 3. Edge detection using a gradient estimator . . 9 

FIGURE 4. Image intensity gradient computed using 
the Prewitt or Sobel gradient operator 
mask 10 

FIGURE 5. Knowledge hierarchy for a global feature 
based pattern recognition system 11 

FIGURE 6. Knowledge hierarchy for a local feature 
based pattern recognition system 13 

FIGURE 7. Direction numbering used by the edge-
tracing algorithm 23 

FIGURE 8. Definition of the fit criterion D 25 

FIGURE 9. Camera image and line approximation of the 
model part 1 using a threshold value of 8 
pixels 29 

FIGURE 10. Definition of a concave first order corner . . 30 

FIGURE 11, Definition of a convex second order corner , . 31 

FIGURE 12, Definition of the corner endpoints 36 

FIGURE 13. Camera image and line approximation of the 
model part 1 39 

FIGURE 14. Camera image and line approximation of the 
rotated model part 1 39 

FIGURE 15. Definition of the corner verification 
checkpoints E and F 44 

FIGURE 16. RAM library data for model part 2 46 

FIGURE 17. Occluded parts recognition program 
flowchart 47 



www.manaraa.com

iv 

FIGURE 18. Camera image and line approximation of the 
model part 2 51 

FIGURE 19. Camera image and line approximation of the 
model part 3 51 

FIGURE 20. Camera image and line approximation of the 
test image A . . . 53 

FIGURE 21. Camera image and line approximation of the 
test image B 53 

FIGURE 22. Camera image and line approximation of the 
test image C 56 

FIGURE 23. Camera image and line approximation of the 
test image D . 59 

FIGURE 24. Camera image and line approximation of the 
test image E 61 

FIGURE 25. Camera images of the first test sequence ... 63 

FIGURE 26. Camera images of the second test sequence . . 64 



www.manaraa.com

V 

LIST OF TABLES 

PAGE 

TABLE 1. Execution times in seconds for the polygon 
approximation algorithm using a fit 
criterion threshold of 0.8 pixels 28 

TABLE 2. Execution times in seconds for the polygon 
approximation algorithm using a fit 
criterion threshold of 1.0 pixels 28 

TABLE 3. Execution times in seconds for the polygon 
approximation algorithm using a fit 
criterion threshold of 2.0 pixels 29 

TABLE 4. Coordinate transformation parameters 41 

TABLE 5. Match hypotheses generated from the Table 4 
data 43 

TABLE 6. Match hypotheses generated for the image A 
(Fig. 20) 54 

TABLE 7. Match hypotheses generated for the image B 
(Fig. 21) 55 

TABLE 8. Match hypotheses generated for the image C 
(Fig. 2iT : .... 57 

TABLE 9. Match hypotheses generated for the image D 
(Fig. 23) 60 

TABLE 10. Match hypotheses generated for the image E 
(Fig. 241 .. . . : .... 62 

TABLE 11. Execution times and library space 
requirements for vision systems with and 
without overlapping parts recognition 
capabilities 66 



www.manaraa.com

1 

ABSTRACT 

This paper presents a microcomputer-based machine 

vision system to recognize and locate partially occluded 

parts in binary or gray level images. The recognition 

process is restricted to untilted, two-dimensional objects. 

A new edge-tracking technique in conjunction with a 

straight-line approximation algorithm is used to identify 

the local features in an image. Corners and holes serve as 

local features. The local features identified in an image 

are matched against all the compatible features stored for 

the model parts. The algorithm computes, for all image and 

model features matches, a coordinate transformation that 

maps a model feature onto an image feature. A new 

clustering algorithm has been developed to identify 

consistent coordinate transformation clusters that serve as 

initial match hypotheses. A hypothesis verification process 

eliminates the match hypotheses that are not compatible with 

the image information. 

The system performance was compared to a vision system 

restricted to recognize nonoverlapping parts. Both systems 

require the same hardware configuration and share the basic 

image processing routines. 
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STATEMENT OF PROBLEM 

Introduction 

In the past 20 years, work has been done at 

universities and independent research centers to develop 

computer vision systems that can deduce the three 

dimensional visual information present in the environment to 

meaningful data for a computer. Machine vision is the 

automatic acquisition and analysis of images to obtain 

desired data for interpreting a scene or controlling an 

activity. The main emphasis lies in the application of 

computer vision technology to control an activity, that is, 

a production process. 

Machine vision adds a high level of flexibility to 

automation equipment. For example, the first robotics 

applications had to be planned very carefully to assure that 

the parts to be handled were at the right place at the right 

time. Robots with vision capabilities are making expensive 

fixture equipment obsolete [1], because the robot movements 

can be corrected based on the information from the vision 

system. Common machine vision applications are part 

counting, sorting, locating, safety, quality control, 

process control, and robot guidance. 

The task of machine vision systems can be divided into 

two major ones [2]. The first task, called image 

processing, deals with image digitization, noise reduction. 
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contrast enhancement, and the conversion of gray scale 

images into binary ones. The second task is a 

classification process that groups images into predetermined 

categories. This process is usually referred to as pattern 

recognition or image analysis. Figure 1 shows the 

information flow through a typical machine vision system. 

Objectives of the Research 

This research concentrated on the image analysis task 

and resulted in the development of a microcomputer-based 

machine vision system designed to recognize partially 

occluded objects. The motivation for this research stems 

from the work by Petersen and Even [3,4], which led to the 

development of a binary machine vision system. This 

research, as well as work by fellow researchers [5,6,7], 

proved the feasibility of low-cost, microcomputer-based 

machine vision systems with a price tag of $5,000 to $7,000. 

Microcomputer-based machine vision systems evoke 

increasing interest as powerful micros become available. 

The reason can be seen primarily in the high costs of 

traditional machine vision equipment. A survey of 

commercial vision systems showed (in 1984) a price range 

from $10,000 to $120,000 [8]; the average price in 1986 is 

around $50,000 [9]. Congiliara [9] predicts a trend toward 

two pricing groups; one group for the more complex turnkey 

systems with an average price of $50,000 to $70,000 and 

another group for around $10,000 to $15,000 for relatively 
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SEGMENTATION 

DECISION 

EDGE DETECTION 

IMAGE SENSOR 

KNOWLEDGE BASE 

BOUNDARY FEATURES, 
GEOMETRIC FEATURES 

PREPROCESSING 
ENHANCEMENT, THRESHOLDING 

FIGURE 1. Information flow through a machine vision system 

standard systems with minimal customization options. Low-

cost machine vision systems can open this technology to 

applications for which a vision system is desirable but not 

cost feasible yet. 
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However, the scope of vision systems such as the ones 

developed by Petersen and Even or Weilert [3,4,6] is limited 

to handle only binary images showing the full outline of the 

part to be recognized. These restrictions resulted from the 

selection of a connectivity algorithm [10,11] that uses 

descriptive figures based on the geometry of the whole part 

to classify the objects under consideration. Such a vision 

system will fail to identify and locate an occluded object, 

because descriptors of part of the shape may not have any 

resemblance to the descriptors of the entire shape. 

A relaxation of the above assumptions is necessary to 

open the scope of machine vision systems for a wider range 

of applications. Often parts are only partially visible due 

to overlap, low contrast, or noise in the image. A 

particular application in mind is the bin-of-parts problem 

which has received wide attention over the past years 

[12,13]. The challenge of this problem lies not only in 

recognizing and locating partially visible parts but also in 

dealing with a truly three dimensional task of combining 

machine vision and robotics technology to acquire randomly 

oriented parts from a tote bin. This problem has been 

reported as one of "the most difficult problems of automatic 

assembly" [13]. 

Furthermore, gray level image processing capabilities 

are needed for applications that cannot be dealt with by 

binary images. Examples are the processing of parts where 

interior features other than holes are important (see Fig. 
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2 ) ,  where contrast between object and background is small or 

even variable, where objects have varying brightness, and 

where objects are jumbled together or perimeter information 

is otherwise obscured. 

FIGURE 2. Sample part which requires gray level image 
processing to recognize all features 

The first goal of this research was to develop an edge-

tracking process which provides the input information for 

the existing algorithm to recognize nonoverlapping parts. 

This step would eliminate the restriction to binary images 

since the edge-tracking algorithm processes only the outline 

of the parts in the image which can be found using an edge 

detection algorithm [14,15]. 

Section AA 
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The second goal was to use the very same edge-tracking 

algorithm as starting point for the overlapping part 

recognition process. This approach has the advantage that 

the resulting machine vision software is using the same 

front end routines containing the necessary algorithms to 

capture a gray level or binary image, to apply an edge 

detector, and to identify and trace the edges in the image. 

The occluded part recognition process will be restricted to 

untilted, two-dimensional objects viewed from a constant 

distance. That is, the parts to be dealt with are required 

to have a small height compared to their width and length 

dimension. 

Finally, the third goal was to compare both, the 

overlapping parts recognition system and the nonoverlapping 

parts recognition system. This comparison should also give 

indication whether or not the recognition of partially 

occluded parts is feasible using a microcomputer-based 

machine vision system. 
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RELEVANT LITERATURE 

Computer vision and pattern recognition research 

started in the early 1960s with research primarily directed 

toward the development of edge detection [16,17,18] and 

other image segmentation (or shape description) techniques 

such as the connectivity algorithm [11], and region growing 

[19]. 

Edge Detection 

The edge detection is an image analysis technique based 

on the detection of discontinuities in the gray level 

intensities in an image. An edge or boundary is defined as 

a place in an image where there is a more or less abrupt 

change in the gray level intensity. This definition 

suggests the use of gradient estimators to detect those 

changes. Figure 3 shows a typical template matching 

approach as suggested by Sobel cited in [20], Prewitt cited 

in [21], and Roberts [22]. Figure 4 shows the gradient or 

spatial operator as defined by Sobel and Prewitt to estimate 

the image intensity gradient using a three point average. 

Many researchers have evaluated the various edge 

detection techniques and, depending on the applications, 

have favored different algorithms. Abdou and Pratt [15] 

clearly recommend the Sobel or Prewitt operator for their 

amplitude response invariance to the edge orientation and 

lack of bias in orientation measurement. Bulloch [23], on 
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FIGURE 3. Edge detection using a gradient estimator 
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FIGURE 4, Image intensity gradient computed using the 
Prewitt or Sobel gradient operator mask 

the other hand, recommends the Hueckel gradient operator 

[24]. 

All these edge detectors have the major disadvantage of 

using a global threshold value to decide whether or not an 

edge is present (see Fig. 3). Mcllroy, Linggrad, and 

Monteith [25] suggested a variable threshold based on the 

local area brightness of the part of the image currently 

investigated. This new approach resulted from the 

understanding that the perceived contrast between regions 

does not only depend on the gray level gradient, but also on 

the average light intensity of the region. 

Another edge detection approach is the application of 

the Lapladan operator to the image [26]. This approach. 
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however, does not give any useful directional information 

about the edge and, being an approximation to the second 

derivative, doubly enhances any noise in the image. 

Pattern Recognition Based on Global Features 

These early image processing research efforts were 

applied in the late 1970s with the introduction of the first 

machine vision systems by General Motors and the Machine 

Intelligence Corporations [27]. Both systems use a 

straightforward bottom-up approach, that is, they reduce the 

amount of data needed to represent the image information 

from step to step. Figure 5 shows the knowledge hierarchy 

for such a global feature based image recognition system. 

The most crucial step is the generation of the so-called 

blob list, which was done using a connectivity or blob 

analysis algorithm. 

Lowest level 

Highest level 

FIGURE 5. Knowledge hierarchy for a global feature based 
pattern recognition system 

Pixel 

Blobs 

Global features 

Parts 
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This kind of an algorithm was developed at the Stanford 

Research Institute [10] and groups the image into blobs, 

i.e., groups of pixels of the same color. When this 

algorithm is applied to binary images, it identifies blobs 

representing the background and blobs representing the part 

in the image. The system then computes characteristic 

values based on the geometry of the whole blob. These 

characteristic values are called global features and can be 

the boundary length of the object, its area, the moments of 

invariant [28,29,3], or Fourier transform parameters [30]. 

These global features can then be used to locate, identify, 

and guide the manipulation of industrial parts. Many of 

today's machine vision systems are using global features for 

pattern recognition tasks because of the robustness of the 

algorithm [1]. 

Pattern Recognition Based on Local Features 

Recognition algorithms based on global features (i.e., 

the geometry of the whole part) are limited to applications 

generating images containing only nonoverlapping parts. 

This restriction resulted in the development of feature 

based pattern recognition methods in the late 1970s [31], 

which allow the problem of recognizing partially occluded 

parts to be addressed. 

The input to most of these local feature based 

algorithms is the edge information of the image under 

consideration. Most edge detectors generate an edge map 
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(Fig. 3) which contains in the simplest case a "1" at 

positions where an edge is present and a "0" where no edge 

was detected. The next logical step in the image analysis 

process is a further reduction of the information in order 

to identify and locate the parts in the image. Figure 6 

shows the knowledge hierarchy for local feature based 

pattern recognition systems. 

Lowest level 

Highest level 

Pixel 

Edge points 

Edge approximation 

Local features 

Match hypotheses 

Parts 

FIGURE 6. Knowledge hierarchy for a local feature based 
pattern recognition system 

Edge approximation 

The edge approximation is a crucial step in the pattern 

recognition process since it replaces the original image 

information with a set of lines to represent the detected 

edges in the image. Various methods have been discussed and 

their performance is evaluated in terms of the accuracy and 

the speed [32]. Gordon and Seering [32] suggest a least 
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squares approximation which minimizes the distance parallel 

to the pixel axis most nearly perpendicular to the 

approximating line. 

Pavlidis and Horowitz [33] developed a split and merge 

algorithm which has been used by a number of researchers. 

This algorithm is an extension of work by Urs Ramers [34]. 

Ramers algorithm was designed to represent a boundary using 

polygons with a minimum number of vertices. The fit 

criterion is the maximum Euclidean distance of the boundary 

points to the approximating polygon. 

Freeman [35] developed a chain encoding algorithm to 

represent edge boundaries. The linear interpolation scheme 

by Ballard [36] realizes an important space saving by not 

representing all points explicitly and without approximating 

the boundary by polygons or curves. 

Curve fitting algorithms such as B-Splines are not 

suitable for this application since they require that the 

curve pass through all the data points [37]. Because the 

boundary approximation is only done to help to identify 

local features it is sufficient to use an approximation 

algorithm as suggested by Ramers [34] which allows the -

approximated polygon vertices to be close to or at the 

actual data points. 

Feature extraction and hypothesis generation 

The next data reduction step in a typical bottom-up 

recognition approach is the identification of local features 
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such as boundary line segments [38-41], holes and corners 

[31-45], curves [40,41,46,47], or moments of invariant [48]. 

Researchers tried to attack this problem in a variety of 

ways. The main distinction between the various methods lies 

in the definition of local features and the effort spent to 

extract those features before a match hypothesis is 

formulated. There is a constant trade off between the cost 

to identify more features to generate a more unique 

hypothesis and the cost to verify various match hypotheses. 

This trade off must not only be examined with respect to the 

execution time of the algorithm but also with respect to its 

robustness. There might be no match hypothesis for a 

heavily occluded part if too many features are required for 

the formulation of such a hypothesis. 

The hypothesis generation can be classified into two 

extreme approaches : The one of least commitment exists 

where all possible matches between image features and stored 

model features are examined. From these matches, sets of 

consistent matches are extracted to form match hypotheses 

that are verified to try to identify one unique match 

hypothesis. Stockman et al. [49], Bolles [31], Bolles and 

Cain [44], Bhanu and Ming [39], and Koch and Kashyap [42,43] 

have used this approach. The advantage is that less time is 

spent to identify and classify local features but more match 

hypotheses have to be evaluated before a part can be 

identified. The matching scheme mostly used in conjunction 

with this hypothesis generation approach can be described as 

follows: 
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1. Match all model features against all image 
features based on the numerical attributes of the 
local features. 

2. Determine a coordinate transformation that 
transforms the model features onto the image 
features. This coordinate transformation is the 
current match hypothesis. 

3. Using coordinate transformation evaluate the 
current match hypothesis via some similarity 
measure to accept or reject the hypothesis. 

4. If match hypothesis similarity measure is 
sufficient stop, else go to step 2 to form a new 
match hypothesis. 

The other approach is that of most commitment where, 

based on the match of a highly distinguished feature, a 

hypothesis is generated and the remaining features are used 

to verify that hypothesis. This method, which concentrates 

on the identification of local features, was used by Perkins 

[47], Knoll and Jain [50], and Turney et al. [40,41]. The 

main disadvantage of this approach is that it will fail if a 

highly distinguished feature happens to be occluded or the 

part does not have any distinguished local features. The 

matching scheme for this approach: 

1. Identify a set of highly distinguished local 
features from the image. 

2. Match all pairs of model features with the image 
features using some numerical attributes of the 
local features and compute a coordinate 
transformation that maps the model features onto 
the image features. 

3. Extract a consistent set of matching pairs (i.e., 
coordinate transformations) by detecting a 
cluster in the coordinate transformation space. 

4. Verify this match hypothesis by predicting and 
identifying other features in the image. 
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The following occluded parts recognition approaches are 

the most widely published ones and they differ primarily in 

the way they identify characteristic parts of the image and 

how the match hypotheses are formulated. 

The Local Feature Method [31,42-45,51,52] characterizes 

objects by their distinctive corners and arcs (local 

features). Thus this approach uses spatially interrelated 

boundary features to model objects. By comparing features 

in the image with features in the pre-taught models 

(prototypes), objects in the image are recognized. Since 

recognition is based only on parts of the boundary, 

overlapping or touching parts may be recognized. A problem 

with this method is the selection of the right number of 

boundary features. If this number is too small, an object 

might be erroneously recognized. A large number of features 

results in long computation times due to the exponential 

nature of the matching process [31]. Furthermore, a large 

number of local features increases the occurence of false 

matches which can distort a match hypothesis. 

Koch and Kashyap [42,43] do not use an edge detection 

algorithm to obtain the outline of an object but a boundary 

tracking algorithm as suggested by Montanari [53]. For the 

feature selection they use polygon moments as estimators of 

the similarity of scene and model corners and an association 

graph to represent match and compatibility constraints. The 

match hypothesis is verified by computing a coordinate 

transform that maps the model features onto the scene. 
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Bolles [31] and Bolles and Cain [44] use corners and 

holes as local features and uses a maximal clique algorithm 

to find the largest set of mutually consistent matches 

between the local features in the image and the model 

features. A match between an image and a model feature 

represents a node in a graph. Two nodes are connected by an 

arc if the matches are mutually consistent, where the 

consistency criterion is based on the geometry of the model 

part. The maximal clique algorithm finds the largest 

completely connected subgraph and the so generated 

hypothesis is verified using the coordinate transformation 

to predict the presence of other features and to check for 

boundary consistency. 

The Theta-S Representation Method [40,41,47] computes a 

curvature function of the boundary. The curvature is 

defined as the rate of change of Theta, the angle of the 

tangent to the boundary with the horizontal axis, with 

respect to the arc length. Perkins [47] extracts high level 

features called concurves for which he computes 11 numerical 

attributes. Those concurves attributes are matched against 

the model feature attributes. The best match give the 

coordinate transform that is used to verify the model 

selection. 

Turney et al. [40,41] split the Theta-S representation 

into subtemplates which are matched against model 

subtemplates by minimizing the mean square errors between 

them. A Hough transform [20,54] type approach was used to 
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find a group of matching subtemplates in the scene. This 

group was assumed to be the match hypothesis. 

Yet another method is the Edge Cue Analysis as 

suggested by Shirai [55]. He also approximates the edges by 

straight lines or elliptic curves to recognize the objects 

using a hierarchy of features. This method combines 

features of the two above mentioned approaches in that it 

uses the Theta-S representation to describe the features and 

it uses a distinctive local feature to formulate a 

hypothesis which is verified with the help of the other 

features in the image. The identification of the local 

features required 80% of the total recognition time since a 

high accuracy in the edge recognition process is necessary. 

Summary 

Most machine vision research during the recent years 

concentrated on the problem of recognizing partially 

occluded parts with the overall goal of a general purpose 

image processing system. Suggested algorithms are, however, 

often restricted to specific parts (e.g., they require a 

hole in the parts [51], allow only one part at a time in the 

image [46], or are computationally very complex and require 

at least a minicomputer [31,43,41]. 

This research concentrated on the development and 

evaluation of a microcomputer-based vision system to 

recognize partially occluded parts. The software was 

designed such that the same front end image processing 
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routines could be used as data input to either the global or 

local feature pattern recognition algorithm. Both/ the 

local and global feature recognition algorithm assume no a 

priori knowledge about the image (e.g., which parts to 

expect in the image) and the hypothesis generation was done 

for the local feature based pattern recognition system using 

a combination of the two extreme commitment approaches. All 

image local features where considered valid matches if two 

feature consistency conditions where satisfied. 
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THE VISION SYSTEM 

The hardware used to develop this occluded parts 

recognition process fits easily within the lower cost end of 

vision processing environments. The computer used was an 

IBM AT operating at 6 MHz, equipped with 512 kBytes of RAM, 

an 80287 coprocessor, and a CGA monitor. The camera used 

was a MicronEye camera by Micron Technology, Inc. This 

camera is capable of generating images with a resolution of 

64 by 128 pixels or 128 by 256 pixels. The camera comes 

with an interface board that fits one of the PC AT expansion 

slots. Thus, no additional hardware (e.g., frame grabber) 

is needed to receive images from the camera. 

The software was written in a combination of 80286 

Assembly code and the "C" language. The low level image 

preprocessing routines (to control the camera, grab an image 

frame, and apply the Sobel edge detector) were implemented 

in Assembly code to achieve a maximum processing speed and 

to have access to all system resources. The high level 

pattern recognition routines were implemented in "C". The 

"C" language was selected because it guarantees a high 

degree of portability for these generic pattern recognition 

routines, it allows for dynamic memory allocation during 

program run time, and it is efficient enough to achieve 

execution times similar to Assembly code. 

The software allows the processing of images up to 256 

by 256 pixel resolution and 256 gray levels. This 
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restriction is due to the maximum data segment size of 64 

kBytes (256 x 256 x 8) for an 8086 or 80286 processor based 

computer. 

Edge Detection and Identification 

The first step in the pattern recognition process is 

the separation and identification of the objects and the 

background. This was done using a Sobel edge detector [20] 

with a local threshold as suggested by Mcllroy et al. [25]. 

The local threshold is the average image intensity in the 

current image window. The output of this edge detection 

process is a simple edge map that contains a "one" at 

positions where an edge was detected and a "zero" where no 

edge is present. 

A recursive edge-tracking algorithm [56] was used to 

identify which edges belong to which part in the image and 

to determine the parent-child relationships. This edge-

tracking process works similarly to the chain code described 

by Wilf [57] except that all processing is done in one 

single image scan. 

The algorithm starts by scanning the edge map generated 

by the Sobel edge detector to find the top left edge pixel. 

The next pixel on the part boundary can be found by checking 

if any of the eight surrounding pixels are on the boundary. 

These eight neighboring pixels (the numbering scheme follows 

the one suggested by Wilf [57]) relative to the current edge 

pixel (X) are shown in Fig. 7. 
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FIGURE 7. Direction numbering used by the edge-tracing 
algorithm 

To assure that the algorithm traces the edges in a 

clockwise manner the number of pixel locations checked is 

limited to 5 of the 8 possible locations. The locations are 

the ones 90 degrees left, 45 degrees left and right, 

directly forward, 45 degrees right and forward, and 90 

degrees right of the last edge pixel. For example if the 

pixel (X) in Fig. 7 was detected coming from pixel (4), the 

algorithm would check if the pixels 2, 1, 0, 7, and 6 are on 

the part boundary. The so identified edge pixels are marked 

with a unique number pertaining to that part boundary. When 

the entire edge is traced, the edge-tracking process finds a 

pixel set numbered with that unique edge identifier. This 

signifies that the edge forms a complete chain. 

Thus, the output of the edge-tracking algorithm is an 

updated edge map where all edges belonging to the same part 

are labeled with the same number. Furthermore, the 

algorithm constructs an array (BLOBPARENT) to describe the 

parent-child relationships. A value BLOBPARENT[i] = i 

indicates that the edges numbered i in the edge map belong 
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to a parent part. A value BLOBPARENT[i] = j indicates that 

the edges numbered i belong to a child (hole) in parent part 

j. 

If nonoverlapping parts are to be recognized it is 

relatively easy to compute the moments of invariant as 

descriptive figures for part identification during the edge-

tracing process. These values are invariant with respect to 

the angle at which one looks at a part. Petersen and Even 

[3,4] and Petersen et al. [56] have demonstrated the use of 

these values for part identification in binary and gray 

level images. 

Edge Boundary Approximation 

The occluded parts recognition process continues with 

the approximation of the outer part boundary by polygon line 

segments. The reason for this step is a further reduction 

of the image information and the need to identify local 

features in the image. As above mentioned, global features 

such as the moments of invariant, are not adequate 

descriptive figures for the recognition of overlapping 

parts. The recognition must be based on a number of local 

features so that the absence of a local feature due to an 

occlusion can be explained by the matching of the remaining 

features. 

Ramers [34] iterative polygon approximation procedure 

was used because of its ease of implementation, its 

robustness, and its approximation quality using a small 
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number of vertices. Furthermore, more sophisticated 

algorithms like spline curve fitting require all data points 

to be on the curve [37]. This is not necessary and not even 

desired for this application. 

Ramers suggests as a fit criterion the maximum 

Euclidean distance between the approximating polygon line 

segment and the curve. The distance is found where the 

tangent to the curve is parallel to the straight line 

segment. The algorithm generates a new vertex if the fit 

criterion exceeds a set threshold value. 

The computation of this fit criterion needed to be 

changed to avoid the definition of the tangent to the edge 

boundary. The implemented algorithm computes the Euclidean 

distance D between the approximating straight-line segment 

(connecting points 1 and 2 in Fig. 8) and each point (e.g., 

point 3 in Fig. 8) on the actual part boundary to determine 

the maximum distance Dmax* 

straight-line 
segment 

FIGURE 8. Definition of the fit criterion 0 
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The area of the triangle 123 in Fig. 8 can be defined 

as 

A = I^D = X1Y2 - Xg?! + X3Y2 + X3Y1 - X1Y3 (2_i) 

where L is the length of the straight-line segment between 

the points 1 and 2 and (Xi, Yi) are the coordinates of the 

triangle corners i. Solving (3-1) for the Euclidean 

distance D. 

0 , Xl?2 - X2?l + X2Y3 - X3Y2 + X3Y1 - XjY, 

L 

Rearranging and defining the constant (for one straight-line 

segment) terms 

AX = Xg - X^ (3-3) 

AY = Y^ - Yg (3-4) 

UV = X^ Yg - Xg (3-5) 

yields 

UV + AX Y? + AY X, 
D = f ^ (3-6) 

Equation (3-6) is computationally more efficient than (3-2) 

since the terms defined by (3-3), (3-4), and (3-5) need only 

be computed once for the identification of the point of 

maximum distance from the straight-line. 
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The other question of concern for the implementation of 

this algorithm is the selection of the initial vertices, 

since we are dealing only with closed curves. (An open 

curve would be a line in the image which would not be 

labeled by the edge-tracing algorithm.) Ramers suggests the 

selection of two oppositely located extremal points as 

initial vertices. This approach was found not to be 

practical due to the additional time spent identifying those 

extremal points. 

Instead, the closed boundary is divided into 5 equal 

parts and the endpoints of these parts serve as initial 

vertices. Experiments with the algorithm showed that the 

division into 5 equal parts and a fit criterion threshold 

value of 1 to 2 pixels would result in the shortest 

processing times in most cases. Tables 1, 2, and 3 give the 

execution times for the implemented polygon approximation 

algorithm for different numbers of initial vertices and 

values of the fit criterion threshold value. Threshold 

values greater than 2 pixel did not guarantee a sufficient 

approximation quality for the following processing steps. 

Figure 9 shows the edge approximation of the model part 

1 shown in Fig. 13 using a large threshold value (8 instead 

of the recommended 1-2 pixels). Note that the algorithm 

fails to detect corners 5 and 6. 

Furthermore, Ramers algorithm was modified such that 

the previous to last vertex and not the last vertex of the 

curve segment under consideration is the starting point of 
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TABLE 1. Execution times in seconds for 
the polygon approximation 
algorithm using a fit criterion 
threshold of 0.8 pixels 

Initial 
vertices 

Image in 
Fig. 13 

Image in 
Fig. 20 

Image in 
Fig. 23 

2 
3 
4 
5 
6 
7 

0.112 
0.115 
0.110 
0.105 
0.108 
0.121 

0.210 
0.185 
0.175 
0.177 
0.170 
0.179 

0.223 
0.200 
0.198 
0.165 
0.197 
0.182 

TABLE 2. Execution times in seconds for 
the polygon approximation 
algorithm using a fit criterion 
threshold of 1.0 pixels 

Initial 
vertices 

Image in 
Fig. 13 

Image in 
Fig. 20 

Image in 
Fig. 23 

2 
3 
4 
5 
6 
7 

0.100 
0.102 
0.098 
0.096 
0.099 
0.110 

0.169 
0.133 
0.142 
0.151 
0.163 
0.168 

0.190 
0.165 
0.157 
0.154 
0.154 
0.160 

the next curve segment. This modification assured that the 

arbitrarily selected initial vertices are not automatically 

included in the set of polygon vertices used to approximate 

the edge boundary. 
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TABLE 3. Execution times in seconds for 
the polygon approximation 
algorithm using a fit criterion 
threshold of 2.0 pixels 

Initial Image in Image in Image in 
vertices Fig. 13 Fig. 20 Pig. 23 

2 0.098 0.160 0.187 
3 0.102 0.146 0.145 
4 0.095 0.137 0.139 
5 0.099 0.135 0.133 
6 0.096 0.137 0.133 
7 0.110 0.124 0.136 

FIGURE 9. Camera image and line approximation of the model 
part 1 using a threshold value of 8 pixels 

Local Feature Definition and Identification 

Corners and holes are used as local features in this 

occluded parts recognition system. Corners have been 

selected as local features for two reasons. First, humans 
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use such terms as sharp corner, sharp notches, or protrusion 

to describe the shape of an object; thus it seems logical to 

use the same kind of descriptors in a vision system. 

Second, using polygons to describe the boundary of a part 

makes the identification of corners easy, since the polygon 

approximation algorithm places vertices at or close to parts 

of the boundary with a big change in curvature, i.e., 

corners. 

Exterior angle & ' 0^ - > 60 degrees 

Length of polygon segment > 4 pixels 

Length of polygon segment >4 pixels 

FIGURE 10. Definition of a concave first order corner 

Y 

Si-1 

The corners are classified into convex or concave 

corners and are defined as points on the part boundary where 
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Y 

Si-1 
i-2 

i-1 

i-2 

Exterior angle 9 • - 0i_2 > 60 degrees 

Length of polygon segment S£_2 > 4 pixels 

Length of polygon segment < 4 pixels 

Length of polygon segment >4 pixels 

FIGURE 11. Definition of a convex second order corner 

the angle between two adjacent line segments is greater than 

60 degrees. Figures 10 and 11 show the definition of first 

or second order type corners. The second order corner 

definition was necessary to account for inaccuracies in the 

boundary approximation process and to ensure that all 

corners in the image can be identified as local features. 

Corners have only two attributes, namely their type (i.e., 

convex or concave) and the magnitude of the exterior angle 

e .  
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Holes are defined in terms of their area and the 

location of their centroid, relative to the top left corner 

of the image. The centroid coordinates are computed using 

the moment calculation equation developed by Hu [28], Wong 

and Hall [29], and Wilf [57]. Defining the coordinate 

differences AX and AY of two adjacent edge pixels as 

where (Xi, Yi) represent the coordinates of the edge pixel 

i. The interior area of a closed curve is given by equation 

(3-9). 

and the centroid coordinates can be computed using (3-10) 

and (3-11). 

(3-7) 

(3-8) 

Area = 4 T (X.AY. - Y -AX .) (3-9) 

1 n <1 

Cx = ^ {(X.AY. - Y .AX .) (Y. AY. ) / Area} (3-10) 

1 n n 
Cy = 3 .1^ {(X.AY . - Y .AX .) (X . - ̂  AX. ) / Area} (3-11) 

Thus, the area and centroid coordinates of a closed curve 

can be computed by simply walking around the boundary and 
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updating the moment equation (3-9, 3-10, 3-11) at every edge 

pixel. Equations (3-12) to (3-16) can be used in the manner 

to compute the descriptive figures for a global feature 

based recognition system as proposed by Petersen et al. 

[56]. 

AL^ = X. AY. - AXj (3-12) 

ly = 3 AL.(X? - X. AX. + -^ AX ?) (3-13) 

'x - Î ^ <3-13) 

'xy = Î AL.(Xiï.- I XjAY (3-14) 

Il = 1% + ly (3-15) 

h = 1% Zy - 'xy (3-161 

Equations (3-15) and (3-16) evaluate the so-called moments 

of invariant which are invariant to the angle at which one 

looks at a part. Thus these values are suited for pattern 

recognition of nonoverlapping parts. 

The reason for using the area and the centroid 

coordinates as hole features and not using the corners as 

local features as done for the outer part boundary is 

threefold. 
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1. The hole perimeter is relatively small compared 
to the perimeter of the whole part. The part 
shown in Fig. 13 for example has an outer 
boundary length of 204 pixel and the hole 
boundary is only 45 pixel long. Noise in the 
image has a far greater effect on the 
approximation quality of a short boundary than of 
a longer boundary. Thus, greater errors must be 
expected if the boundary of holes is approximated 
using the implemented algorithm. 

2. It is computationally more expensive to find a 
polygon approximation of the boundary and to 
identify corners as local features than to 
compute the area and the centroid coordinates of 
an hole. 

3. Given the above local feature corner definition, 
circular holes could not be represented by this 
system. 

Feature Matching 

The feature matching process computes, for all 

compatible image and model features, a coordinate 

transformation that maps a model feature onto an image 

feature; i.e., every compatible image feature is matched 

against every model image. This approach assumes that only 

rigid body motion is considered; in other words, parts are 

not allowed to be deformed. The feature compatibility rules 

are defined as 

1. both the model and image feature must be either 
convex or concave, 

2. the exterior corner angle of the image feature is 
not allowed to deviate more than 10% from the 
model feature angle. 

Assume that (Ixif lyi) are local feature coordinates in 

the current image and (Mxi, Myi) are the coordinates a of 

local feature of a model part. The matrix equation (3-17) 
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maps a model coordinate point (Mxi, Myi) onto the image 

point (Ixi, lyi): 

where 9  is the rotation of the model point around the 

coordinate system origin and (Tx, Ty) is the translation 

needed to align the model point with the image point. R is 

the row to column aspect ratio of the image sensor. This 

parameter is necessary since not all cameras display an 

image without distortion. Thus, the image in the computer 

memory must be adjusted at this point to represent the real 

image. The MicronEye camera has a row to column aspect 

ratio of 2.5. However, this value is much smaller for more 

sophisticated cameras. For example, the GE TN2500 CID 

camera has a row to column ratio of only 1.38. 

Computing the coordinate transform parameters {$, Tx, 

Ty) based on only one feature point proved insufficient due 

to inaccuracies in the boundary approximation process. 

Instead, the transform parameters were determined based on 

an average value of three corner points (points A, B, C in 

Fig. 12). Koch and Kashyap [43] call these terms polygon 

moments. The coordinates of points A, B, and C are stored 

by the system in addition to the two corner attributes, 

i.e., corner type and magnitude of the exterior angle 6, 

(3-17) 
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T c 

B 

AB • 10 pixels BC " 10 pixels 

FIGURE 12. Definition of the corner endpoints 

To determine the coordinate transformation needed to 

translate a model point onto a given image point one can use 

a least square approach and minimize the sum of the squared 

deviations between the real image points and the transformed 

model points; thus 

MIN J = Ji + Jg (3-18) 

where the terms Ji and J2 are defined as 

(3-19) 

in 
2 ' n " Ni ' ^xi^ sin(*) - Ty^j^ (3-20) 
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Taking the partial derivative with respect to Tx, Ty, and B 

results in three equations to determine the three unknown 

coordinate transformation parameters. The partial 

derivatives with respect to Tx and Ty equated to zero yield 

equations (3-21) and (3-22). Note that the summation limits 

i = l,...,n are implied by the summation sign J; 

~ n E BX ~ ̂ x ^ sin(9) - Tjj](-1) = 0 (3-21) 

- n Z[ly ~ ̂ y cos(9) - R sin(g) - Ty](-1) = 0 (3-22) 

Solving for Tx and Ty 

1 M 
Tx= H [ Z ^x •  cos(ô) +  s i n i d )  ] (3-23) 

Ty = i Illy - iMy cos(9) - IM^R sin(9) ] (3-24) 

Taking the partial derivative with respect to 6 and equating 

it to zero yields 

3 J1 1 M 
'Ôë~ ~ n ZCf^x ~ cos(6) + ̂  sin(9) - sin(0) 

+ ̂  cos(0)}] (3-25) 
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9J, , 
3ë~ ~  H Z C f l y  -  My c o s ( 9 )  - R sin(9) - T^} (My sin(0) 

- Mx R cos(ô)}] (3-26) 

^ J 9 J1 9 J <5 
dë ' W * JeT ' ^ (3-27) 

Substituting the expressions for Tx and Ty into (3-25) and 

(3-26), respectively, and multiplying by n allows (3-27) to 

be rewritten as 

If = 0 = R %(Ix M^) sin(9) + Id^My) cos(e) 

- H sin(e) - II xXM ycos(0) 

-  I ( I y  M^) c o s i d )  + iI(IyMy) sin(9) 

+ H %Iy 2^% cos(9) - iriiZly%MySin(6) (3-28) 

Solving (3-28) for d  yields 

tan(ô) = V x^v^ I^Z^x^^v" ̂ ^v ^^x ^n (3-29) 

R^dx^x^ - a%Ix %%%] + iEZdy»^) - fllyZMy] 

Matching each local feature of the model part shown in 

Fig. 13 against each compatible feature of the image shown 

in Fig. 14 results in the coordinate transformation 

parameters given in Table 4. Note that the convex corners 
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FIGURE 13. Caméra image and line approximation of the model 
part 1 

FIGURE 14. Camera image and line approximation of the 
rotated model part 1 

of the model part (corners 6 and 7 in Fig. 13) are matched 

only against convex corners (2 and 3) in the image shown in 

Fig. 14. The corners are numbered in the order in which 

they were detected by the system. 
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This feature matching process results in the 

restriction of this vision system to recognize only untilted 

parts in the image. The coordinate transformation between 

the model features and the image features is assumed to be 

two-dimensional. Thus, both features must be in the same 

plane. 

Hypothesis Generation 

In order to generate a match hypothesis one has to 

identify the biggest cluster of consistent coordinate 

transformation parameters in Table 4. To solve this 

problem, a new two step clustering algorithm was developed. 

This algorithm applies a one-dimensional Hough transform 

[58] in the first step to find initial clusters in the 6 

space. The second step identifies and deletes stray matches 

from the 6 clusters based on a second clustering in the Tx 

parameter space. The complete algorithm is as follows. 

1. Initialize accumulator array with 90 bins (each 4 
degrees "wide") 

2. Increment the appropriate bin for each d  entry in 
Table 4 by one, e.g., the first entry in Table 4 
would increment bin 0 by one, the second entry 
would increment bin 75 by one and so forth, 

3. Compute for each bin the sum of its two neighbor 
bin entries plus its own entry. 

4. Find the biggest rotational clusters in this new 
accumulator array. 

5. For this cluster, find the maximum number of 
consistent Tx translation parameters. If the 
maximum number of consistent Tx matches is 
smaller than 30% of the number of local features 
in the model part; discard this 6 cluster. 
Otherwise, add this cluster to the hypothesis 
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TABLE 4. Coordinate transformation parameters 

Model corner Image Corner d  
(degree) 

Tx 
(pixel) 

Ty 
(pixel) 

1 1 1.6 -16.9 -3.9 
1 4 303.0 21.3 115.4 
1 5 3.2 4.1 -3.8 
1 6 121.2 84.9 -52.5 
1 7 183.7 83.1 64.7 
1 8 303.3 1.4 110.8 
2 1 243.5 39.9 146.8 
2 4 180.9 104.1 63.7 
2 5 246.5 57.9 151.1 
2 6 2.6 4.2 -2.1 
2 7 68.6 31.4 -91.2 
2 8 183.3 83.4 64.8 
3 1 181.6 63.4 60.7 
3 4 123.0 85.3 -22.1 
3 5 183.3 83.6 66.5 
3 6 301.2 22.8 90.2 
3 7 3.7 3.7 -7.1 
3 8 123.2 65.5 -26.2 
4 1 64.1 25.9 -61.8 
4 4 1.7 23.6 11.3 
4 5 67.1 48.1 -59.0 
4 6 183.4 83.9 68.7 
4 7 249.2 38.0 119.7 
4 8 4.1 3.9 -8.7 
5 1 2.4 4.1 -4.7 
5 4 303.7 32.1 70.3 
5 5 4.0 25.1 -3.1 
5 6 121.8 74.7 -6.5 
5 7 184.5 62.0 63.6 
5 8 303.8 12.2 65.8 
6 2 0.9 4.1 -1.4 
6 3 304.9 17.7 87.3 
7 2 56.9 25.8 -78.8 
7 3 1.1 4.2 -1.1 
8 1 57.5 11.7 -98.7 
8 4 358.4 3.9 6.0 
8 5 60.2 34.6 -97.6 
8 6 180.0 103.7 62.8 
8 7 242.0 51.2 159.2 
8 ~ 8 0.8 -15.8 -3.3 
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list by use of an average value for 8, Tx, and 
Ty. Consistency of the Tx translation parameter 
is given if the difference between the current 
value of Tx and the average value of Tx for this 
rotation cluster is less than 8 pixels. 

6. Eliminate the current 6 cluster from the 
accumulator array and continue with step 4 if 
more hypotheses are desired or terminate. 

This algorithm does the clustering first in the 6 

parameter space because Koch and Kashyap [43] have shown 

that comparing translational parameters (Tx, Ty) becomes 

useless since a change in the model coordinate system can 

make their difference zero even if the rotational parameter 

id) differs. The elimination of stray matches in the 

rotational parameter space is done based only on Tx because 

experiments with this algorithm have shown that one 

translation parameter is sufficient to confirm or reject a 

match. 

Another reason for the initial clustering to be done 

for the rotational parameter is the fact that the lower and 

upper bounds for 6 are well defined (namely 0 to 360 

degrees) so that a straightforward accumulator array can be 

used for this task. 

Table 5 shows the four hypotheses that were generated 

from the match data in Table 4 by use of the above 

clustering algorithm. Looking at the data in Table 4 and 

the first hypothesis, one finds that the system correctly 

identified a match between the model part corners 1, 2, 3, 

4, 5, 6, 7, 8 (Fig. 13) and the image corners 5, 6, 7, 8, 1, 

2, 3, 4 (Fig. 14), respectively. 
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TABLE 5. Match hypotheses generated 
from the Table 4 data 

Hypothesis e 
(degree) 

Tx 
(pixel) 

Ty 
(pixel) 

1 2,04 4.04 -2,86 
2 -177.43 83.49 66,19 
3 -56.68 18,51 89.67 
4 67.82 31,38 91.20 

Hypothesis Verification 

The hypothesis verification uses a similar approach as 

Knoll and Jain [50]. Given a match hypothesis with its 

coordinate transformation parameters (0, Tx, Ty), each model 

corner point can be translated into the image space. The 

program then examines the neighborhood of that position to 

find positive or negative indication for the presence of the 

local feature. 

Positive indication for a corner is given if the point 

E in Fig. 15 is within the part, that is, has the same color 

as the part and the point F in Fig. 15 is outside of the 

part, that is, has the same color as the background. 

Negative indication for a corner is given if the point E is 

outside of the part. Neutral indication (does not increase 

either the positive nor the negative hypothesis score) is 

given in all other cases. The neutral indication is for 

cases where a corner might be overlapped by another part so 

that the point F in Fig, 15 is also within a part cluster. 
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AB • 10 pixels BC • 10 pixels BF *> BE > 0.5 BD 

FIGURE 15. Definition of the corner verification 
checkpoints E and F 

The verification of holes is even simpler and the 

program checks only at the centroid position if a background 

color is present. If so, the part hole count is incremented 

by one. 

The total hypothesis score is computed using the 

equation (3-30). Negative scores are set to zero. 

^ TElles'O.: <3-30) 

Thus the corners make up 70% of the total hypothesis score 

and the holes 30%. These weighting factors were chosen 

because it was felt that the corners give a stronger 
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evidence for the presence of a part in the image due to the 

twofold check for the existence of a corner feature in the 

image. A hypothesis is rejected if the hypothesis score is 

less than an acceptance threshold value. In the current 

system this value equals 70%. The program selects the 

hypothesis with the highest score as the match hypothesis 

between a part cluster in the image and a model part in the 

library. 

Local features that have been identified and for which 

a satisfactory match hypothesis has been found are marked 

invalid by the system to assure that they are not included 

in the matching process for other model library parts. 

Model Library 

The model library is designed to store in RAM memory 

the data for all local features necessary to describe the 

model parts the user wants to identify in other images. 

This library is constructed by the user by simply showing 

the system the model parts, executing the local feature 

identification routine, and storing the generated feature 

data in the model library. Furthermore, the user has the 

option to store and retrieve the contents of the model 

library on or from disk files and to delete individual model 

parts from the library. The model parts are sorted in the 

library by increasing number of local features. Figure 16 

shows the information stored in the model library for the 

model part 2 (Fig. 18). 
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Concave corner 1 in parent blob 1 with exterior angle: 86.95 
row column 

9.00 82.00 
9.00 92.00 

18.99 92.53 

Concave corner 2 in parent blob 1 with exterior angle: 93.04 
row column 

46.01 92.47 
56.00 93.00 
56.00 83.00 

Concave corner 3 in parent blob 1 with exterior angle: 90.00 
row column 

56.00 78.00 
56.00 68.00 
46.00 68.00 

Concave corner 4 in parent blob 1 with exterior angle: 90.00 
row column 

19.00 68.00 
9.00 68.00 
9.00 78.00 

1 hole(s) with the following parameters 
area: 127 cx: 81.01 cy: 32.03 

FIGURE 16. RAM library data for model part 2 

The size of the RAM library is limited by the computer 

memory (the program allocates the necessary memory for each 

new model part during run time) and the execution time of 

the occluded parts recognition algorithm. The execution 

time of that algorithm increases in the worst case linearly 

with the number of model parts stored in the RAM library 
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since the algorithm tries to match the image features 

against each model part until a sufficient match hypothesis 

has been found. 

Program Flowchart 

The flowchart shown in Fig. 17 gives an overview of the 

sequence in which the different algorithms are executed 

during the overlapping parts recognition process. In 

addition to the algorithm description the flowchart also 

lists the function names used in the program source code. 

Identify the different edges and its 
parent child relationships. 

endpoint() 

Grab one image frame from the camera 
and store it in the 64 kByte image 
buffer IMAGE;BYTE_MAP. 

MICRON0 

Apply the Sobel edge detector and 
store the resulting edge map at 
DATA:_EDGE_MAP. 

EDGEO 

A 

FIGURE 17. Occluded parts recognition program flowchart 
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A 

Starting with the first image cluster 

Starting with the first part in the 
model library 

Identify the local features 
(holes and corners) 

f ind_features() 

Approximate the boundaries using 
straight line segments. 

polygon() 

For the current image cluster and 
libary part compute all feasible 
coordinate transformations and apply 
the Hough transform on the rotational 
parameter. 

hough_transform() 

B C D 

FIGURE 17. (Continued) 
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B C D 

yes 
Another image cluster to work on ? 

no 

Another library part and more local 
features to be matched ? 

yes 

no 

stop 

If the best cluster score is greater 
than the hypothesis threshold then 
print the results and mark the 
identified local features as matched 

Find the 4 most consistent coordinate 
transformations by applying steps 3-6 
of the clustering algorithm. 

transformation_cluster() 

For each of these four hypotheses 
compute the hypothesis score and save 
the results of the best one. 

hypothesis_score() 

FIGURE 17. (Continued) 
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RESULTS 

This chapter describes the experiments performed to 

evaluate the performance of the developed occluded parts 

recognition system. The main emphasis vas to gain some 

insight about the flexibility and limitations of the 

proposed system and to compare it with another vision system 

to recognize nonoverlapping parts. 

The following experiments and execution times were 

gathered on the above described computer hardware using the 

three model parts shown in Figs, 13, 18, and 19. The RAM 

part library required a total of 0.650 kBytes of memory, 

where 0.31 kBytes were required for part 1, 0.17 kBytes for 

part 2, and 0.17 kBytes for part 3. As mentioned above, the 

storage requirements for a model part increase with the 

number of local features of that part. For corner features, 

the algorithm requires the coordinates of three points, the 

magnitude of the exterior angle, and the direction of 

curvature (concave or convex). Only the centroid 

coordinates and the area value are needed to describe a hole 

feature (see Fig. 16). 

The selected test images A-E (Figs. 20-24) were chosen 

to demonstrate the ability of the algorithm to identify 

partially occluded parts, to highlight some performance 

characteristics, and to show its limitations. The test 

images A-E show the model parts with varying degrees of 

occlusion and with one or two image clusters to demonstrate 

the multi cluster handling capability of the software. 
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FIGURE 18. Camera image and line approximation of the model 
part 2 

FIGURE 19. Camera image and line approximation of the model 
part 3 



www.manaraa.com

52 

Recognition of Occluded Parts in Different Test Images 

Figures 20 and 21 contain only two of the three model 

parts (namely part 1 and 3) with different amount of 

occlusion. Thus, only one part cluster is in the image and 

the algorithm has to determine which of the identified local 

image features belongs to which model part. 

The Tables 6 and 7 show the match hypotheses generated 

by the system if the test images A and B (Figs. 20 and 21) 

are compared with the feature information for model parts 1, 

2 and 3 (Figs. 13, 18, and 19) stored in the RAM part 

library. 

The system correctly identifies the two model parts 1 

and 3 in the image and also fails to recognize model part 2 

(since the hypothesis scores for part 2 are less than 70%). 

Note that only two hypotheses are generated for the match 

with part 1. The program tries to identify a maximum of 4 

match hypotheses. However, it stops processing if no more 

consistent coordinate transformations can be identified in 

the local feature match data set. Furthermore, note that 

the match hypotheses 3 and 4 for the model part 3 results in 

the same hypothesis score since the part is nearly symmetric 

and the program identifies it in both positions, namely 9 

and -171 degrees rotated. In both cases, the program needed 

1.91 sec for the recognition task. 

The rotational coordinate transformation parameters for 

model part 3 should have been approximately the same for 
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FIGURE 20. Camera image and line approximation of the test 
image A 

FIGURE 21. Camera image and line approximation of the test 
image B 
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TABLE 6. Match hypotheses generated for the image A (Fig. 
20) 

Hypothesis 9  Tx Ty pos. neg. holes score 
for part 1 (degree) (pixel) (pixel) 

pos. neg. 
(%) 

1 -0.61 -0.29 0.05 7 0 1 91 
2 -99.98 13.11 120.46 1 5 0 0 

Hypothesis 9  Tx Ty ^ pos. neg. holes score 
for part 2 (degree) (pixel) (pixel) 

pos. neg. 
(%) 

1 1.05 -36.35 -8.07 3 0 0 52 
2 8.48 -46.68 -31.75 3 1 0 35 
3 0.00 124.00 61.00 0 4 1 0 
4 -170.32 107.71 95.68 3 1 0 35 

Hypothesis 9  Tx Ty ^ pos. neg. holes score 
for part 3 (degree) (pixel) (pixel) 

pos. neg. 
(%) 

1 0.42 5.21 -1.66 2 1 0 17 
2 60.42 94.02 58.95 0 4 2 0 
3 9.18 -25.03 -17.41 3 0 2 83 
4 -170.82 59.06 76.33 3 0 2 83 

image A and B since the only difference between both test 

images is the degree of overlap between the two model parts. 

The reason why the system computed different coordinate 

transformation can be explained by approximation errors in 

the local feature identification process. 

However, it is interesting to note that image B with 

the greater degree of overlap between the two model parts 

resulted in better match hypothesis scores than image A. 

This is due to the fact that all corners of part 3 are 

visible in the image and that the corners have a higher 

weight than the holes in the computation of the hypothesis 

scores. 
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TABLE 7. Match hypotheses generated for the image B (Pig, 

Hypothesis e Tx , Ty ^ pos. neg. holes score 
for part 1 (degree) (pixel) (pixel) 

pos. neg. 
(%) 

1 -0.27 -0.32 -0.67 8 0 1 100 
2 -38.91 -6.02 59.20 1 5 1 0 

Hypothesis e Tx Ty ^ pos. neg. holes score 
for part 2 (degree) (pixel) (pixel) 

pos. neg. 
(%) 

1 1.05 -36.35 -8.07 3 0 0 52 
2 8.48 -46.68 -31.75 3 1 0 35 
3 0.00 124.00 61.00 0 4 1 0 
4 -170.32 107.71 95.68 3 1 0 35 

Hypothesis d Tx Ty ^ pos. neg. holes score 
for part 3 (degree) (pixel) (pixel) 

pos. neg. 
(%) 

1 1.61 5.50 -4.20 2 1 0 0 
2 -58.39 93.73 60.99 0 4 2 0 
3 8.48 -16.18 -17.35 4 0 1 85 
4 -171.52 68.35 73.79 4 0 1 85 

In Fig. 22 a third model part (part 2) was added to the 

image shown in Pig. 20 so that this image consists of two 

independent part clusters. One of which is the image of the 

overlapping parts 1 and 3 and the other one is the model 

part 2. 

In order to deal with this kind of images, the system 

generates a match hypothesis for each model part and each 

image cluster. That is, each model part is matched against 

the local features found in the image cluster 1 and 2. The 

algorithm indicates a match if the maximum match hypothesis 

score of all the cluster hypotheses is greater than the 
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1 O 

9  

FIGURE 22. Camera image and line approximation of the test 
image C 

hypothesis acceptance threshold value (for the implemented 

system 70%). The disadvantage of this approach is that a 

model part must be tested against each image cluster before 

a final match hypothesis can be formed. Thus multiple 

cluster in the image will increase the recognition time. 
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TABLE 8. Match hypotheses generated for the image C (Pig. 
22) 

Hypothesis 
Image cluster 1 

Hypothesis 6 Tx Ty pes. neg. holes score 
for part 1 (degree) (pixel) (pixel) 

pes. neg. 
(%) 

1 -0.61 -0.29 -0.05 7 0 1 91 
2 -99.98 13.11 120.46 1 5 0 0 

Hypothesis 
Image cluster 2 

Hypothesis e Tx Ty pos. neg. holes score 
for part 1 (degree) (pixel) (pixel) 

pos. neg. 
(%) 

1 -0.32 49.66 3.49 1 7 1 0 
2 89.68 130.85 62.06 0 8 1 0 
3 -120.28 106.86 153.09 3 5 0 0 

Hypothesis 
Image cluster 1 

Hypothesis e Tx Ty pos. neg. holes score 
for part 2 (degree) (pixel) (pixel) 

pos. neg. 
(%) 

1 4.80 -56.21 -22.87 3 0 0 52 
2 178.57 120.32 59.48 2 0 0 35 
3 9.11 -55.54 -33.55 4 1 0 52 
4 121.95 103.32 -123.55 0 4 0 0 

Hypothesis 
Image cluster 2 

Hypothesis e Tx Ty pos. neg. holes score 
for part 2 (degree) (pixel) (pixel) 

pos. neg. 
(%) 

1 0.00 10.00 0.00 4 0 1 100 
2 178.95 170.72 61.74 4 0 1 100 
3 -178.95 170.25 69.07 4 0 1 100 
4 -59.71 32.27 197.91 0 3 0 0 

Hypothesis 
Image cluster 1 

Hypothesis e Tx Ty pos. neg. holes score 
for part 3 (degree) (pixel) (pixel) 

pos. neg. 
(%) 

1 0.42 5.21 -1.66 2 1 0 0 
2 60.42 94.02 58.95 0 4 2 0 
3 9.18 -25.03 -17.41 3 0 2 83 
4 -170.82 59.06 76.33 3 0 2 83 
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TABLE 8. (Continued) 

Hypothesis 
for part 3 

d 
(degree) 

Image cluster 2 
Tx Ty 

(pixel) (pixel) 
pos. neg. holes score 

(%) 

1 -1.05 50.29 5.23 2 2 0 0 
2 0.00 130.00 62.00 0 4 2 0 
3 61.01 79.03 -78.74 2 1 0 17 

The analysis of the image C (Fig. 22) resulted after 

3.71 seconds in the match hypotheses given in Table 8. The 

system correctly identified the parts 1 and 3 in the image 

cluster 1 and the part 2 in the image cluster 2. Due to the 

symmetry of model part 2, the system offered three equally 

good match hypotheses for this part. The match hypotheses 

for the model parts 1 and 3 agree with the ones generated 

for the analysis of the test image A. 

The test images D and E (Figs. 23 and 24) have the 

model part 2 added to the test images A and B, respectively. 

Thus they consist of one image cluster of three overlapping 

parts. 

The results shown in Table 9 were generated for image D 

after 2.92 seconds recognition time. The recognition 

process for image E required only 2.61 seconds primarily due 

to the fact that fewer local features were identified than 

in image D. The match hypotheses for image E are listed in 

Table 10. 

Whereas the system is still able to recognize all parts 

correctly in the test image D it fails to recognize the 
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1 3  

10 

1 2 

FIGURE 23. Camera image and line approximation of the test 
image D 

model part 2 in image E. This can be explained by the fact 

that the clustering algorithm does not guarantee that stray 

matches are not included in the computation of the average 

coordinate transformation parameters. Looking at the data 

in Table 10 one can see that the system must have identified 
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TABLE 9. Match hypotheses generated for the image D (Fig. 
23) 

Hypothesis e Tx , Ty pos. neg. holes score 
for part 1 (degree) (pixel) (pixel) 

pos. neg. 
(%) 

1 -0.68 -0.67 -0.32 7 0 1 91 
2 -86.86 42.64 112.39 1 5 0 0 

Hypothesis 9 Tx , Ty ^ pos. neg. holes score 
for part 2 (degree) (pixel) (pixel) 

pos. neg. 
(%) 

1 -9.21 -26.30 28.60 3 1 0 35 
2 169.67 136.18 24.96 3 1 0 35 
3 9.11 -55.54 -33.55 4 0 0 70 
4 -169.79 98.28 98.24 4 0 0 70 

Hypothesis d Tx , Ty ^ pos. neg. holes score 
for part 3 (degree) (pixel) (pixel) 

pos. neg. 
(%) 

1 169.67 105.45 35.92 2 1 0 17 
2 -132.85 75.91 129.37 1 1 0 0 
3 9.18 -25.03 -17.41 3 0 2 83 
4 -170.82 59.06 76.33 3 0 2 83 

most of part 2's local features, since the second set of 

coordinate transformation parameters are close to the 

correct ones as listed in Tables 6-9, 

The algorithm apparently included a feature match in 

the coordinate transformation calculation that did not 

belong to the model part 2. The other reason for differing 

transformation parameters between two similar images are 

approximation errors in the edge coding and local feature 

identification process. 
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1 

FIGURE 24. Camera image and line approximation of the test 
image E 

Summary 

The three model parts (Figs. 13, 18, and 19) were 

selected because they are representative of the type of 

images which were used during the development and testing of 

this parts recognition system. In general, all these parts 
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TABLE 10. Match 
24) 

hypotheses generated for the image E (Fig. 

Hypothesis 
(deg 

d Tx , Ty pos. neg . holes score 
for part 1 (deg ree) (pixel) (pixel) 

pos. neg 
(%) 

1 "5 .79 -1.03 12.79 7 0 1 91 
2 -38 .91 -6.02 59.20 1 5 1 0 

Hypothesis 
(deg 

e Tx , Ty ^ pos. neg . holes score 
for part 2 (deg ree) (pixel) (pixel) 

pos. neg 
(%) 

1 -6 .72 -30.93 21.56 3 1 0 35 
2 8 .48 -46.68 -31.75 3 1 0 35 
3 169 .67 136.18 24.96 3 1 0 35 
4 -170 .43 107.69 95.77 3 1 0 35 

Hypothesis 
(deg 

6 Tx , Ty ^ pos. neg . holes score 
for part 3 (deg ree) (pixel) (pixel) 

pos. neg 
(%) 

1 8 .48 -16.18 -17.35 4 0 1 85 
2 169 .67 105.45 35.92 2 1 0 17 
3 -171 .52 68.35 73.79 4 0 1 85 
4 -10 .33 13.72 17.79 2 1 0 17 

have distinct corner features, straight edges, and none or 

some holes. Since this algorithm is not able to recognize 

round objects, parts with curved boundaries were not 

attempted to be recognized. 

The test images A-E (Figs. 20-24) were selected to show 

two image sequences with the model parts under varying 

degree of overlap. The first sequence are the images A and 

B shown together in Fig. 25. Recall the system had no 

difficulties recognizing both model parts (1 and 3) in 

either image even though model part 1 was overlapping part 3 

to a great extent. The second sequence was constructed by 
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FIGURE 25. Camera images of the first test sequence 

adding the model part 2 in exactly the same position to 

images A and B which resulted in images D and E shown 

together in Fig. 26. This time the system was able to 

recognize all parts in image 0 (Fig. 23) whereas it failed 

to recognize part 2 in image E (Fig. 24), even though part 2 

is shown with the same amount of overlap in images D and E. 
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FIGURE 26. Camera images of the second test sequence 

This demonstrates the problem with this kind of an 

algorithm. With increasing amounts of overlap the 

coordinate transformations computed for individual- features 

become more and more similar for the different model parts. 

Thus, it can not be guaranteed that the clustering algorithm 
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is not including a coordinate transformation pertaining to 

another model feature. However, if stray matches are 

included in the computation of the average coordinate 

transformation which forms one match hypothesis the 

hypothesis verification process is more likely to fail. 

Comparing the two best match hypotheses for the model 

part 2 (Tables 9-10), as generated from the test images D 

and E, one finds that the angular rotation varies only by 

0.7 degrees, the translation parameter Tx shows a difference 

of 8.86 pixels, and Ty a difference of 1.8 pixel. These 

variations are big enough to let the hypothesis verification 

process fail. 

For this reason it is difficult to establish general 

rules on when the system will fail to recognize occluded 

parts and this research did not establish boundaries of the 

occluded parts recognition ability of the developed system. 

Performance Comparison of Two Pattern Recognition Systems 

The execution times and space requirements for the 

demonstrated system are relatively large compared to these 

performance criteria for a vision system designed to 

recognize nonoverlapping parts in binary or gray level 

images. The execution times for the nonoverlapping parts 

recognition system were gathered with the same hardware 

configuration using a software package developed by Petersen 

et al..[56]. 
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TABLE 11. Execution times and library space requirements 
for vision systems with ana without overlapping 
parts recognition capabilities 

Recognition 
of 

Model part 1 
Model part 2 
Model part 3 
Image A 
Image B 
Image C 
Image D 
Image E 

Overlapping parts 
recognition system 

Time Library space 
(sec) (kBytes) 

Nonoverlapping parts 
recognition system 

Time Library space 
(sec) (kBytes) 

1.2 0.310 0.5 0.030 
1.1 0.170 0.5 0.030 
1.1 0.170 0.5 0.030 
1.9 0.650 - -

1.9 0.650 - -

2.9 0.650 - -

2.6 0.650 - -

3.7 0.650 - -

A comparison of the execution times and the space 

requirements is shown in Table 11. Three facts are 

worthwhile noticing. First, for the occluded parts 

processing system, the execution times and library storage 

space requirements increase substantially with the 

complexity of the parts to be dealt with. For the 

nonoverlapping parts recognition system, the library space 

requirements are independent of the part complexity and the 

execution time differences are not measurable for different 

parts. 

Second, since both systems use a brute force library 

search until all parts (or features) in the image have been 

matched and the matching in the occluded parts recognition 

system takes about 50% of the total processing time (20% for 

the nonoverlapping parts software) the above execution times 
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will deviate even more as more parts are added to the RAM 

library. 

Third, for applications were both systems could be 

used, the nonoverlapping parts recognition system is about 

twice as fast as the occluded parts recognition system. 

This is primarily due to the added task of the edge 

approximation and the more complex feature matching process 

for the local feature based pattern recognition process. 

For tasks, for which partially occluded parts recognition 

capabilities are necessary (e.g., recognizing parts in the 

images A-E), the recognition times are quite substantial and 

the successful performance of the system cannot always be 

guaranteed. 
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CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH 

Conclusions 

This research has resulted in a microcomputer-based 

vision system capable of recognizing partially occluded 

parts. However, currently the system is restricted to parts 

which have holes or distinctive corner features. 

Furthermore, the developed algorithm is also restricted to 

untilted, two-dimensional parts in the image that are viewed 

from a constant distance. That is, the parts to be dealt 

with are required to have a small height compared to their 

width and length dimension. 

The recognition process is based on the development of 

a new edge-tracking technique in conjunction with a straight 

line approximation algorithm to identify local features in 

the image. The local feature definition, as points on the 

part boundary with an angle greater than 60 degrees between 

two neighboring straight line segments, resulted in the 

inability of the algorithm to recognize circular parts. 

The local features of the model parts are matched 

against all compatible local features identified in the 

current image. A new clustering algorithm has been used to 

identify clusters of consistent coordinate transformation 

that serve as initial match hypotheses, A hypothesis 

verification process eliminates the match hypotheses that 

are not compatible with the image information on hand. 
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A performance comparison of this machine vision system 

with a vision system restricted to nonoverlapping parts 

recognition and based on the same hardware configuration 

showed execution times at least twice as long for the 

occluded parts recognizing system. Furthermore, it 

appeared, that with increasing complexity of the scene to be 

analyzed the reliability of the system decreased, due to the 

fact that the clustering algorithm does not guarantee that 

stray matches are not included in the hypothesis generating 

process. 

If shorter processing times are required the time 

performance of this system can be improved using two 

different approaches. One way would be the implementation 

of this software on a more powerful computer; this should be 

straightforward since about 70% of the code was developed in 

the "C" language which is easily ported onto another 

computer system. The second option of execution time 

performance improvement of the software would be the 

implementation of a parallel processing approach. Since the 

implemented system uses a traditional bottom-up image 

processing approach where each step can be performed without 

the interaction with a previous step it would be feasible to 

dedicate one processor to the local feature recognition task 

and another processor to the match hypothesis generation and 

verification task. 

In conclusion, one can say that the recognition of 

occluded parts is feasible using a microcomputer-based 

vision system. 
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Suggestions for Further Research 

An extension to this project would be the definition of 

another local feature based on the average curvature of the 

polygon line segments. The local feature could be defined 

at a position where the average curvature changes from 

convex to concave or vice versa. This would allow for the 

recognition of round objects. 

The next step would be the elimination of the 

constraint that only untilted parts at a fixed viewing 

distance can be recognized. Petersen and Even [4] have 

shown that a simple sonar range finding device can be used 

to allow parts recognition from varying viewing distances. 

To allow tilted parts to be recognized would widen the 

application scope of the vision system and solve the bin of 

parts problem. 

Another suggestion for further research would be a 

quantative examination of all the parameters used by this 

system and their impact on the performance of the algorithm. 

Parameters to be evaluated include: 

1. The fit criterion threshold value for the 
boundary approximation algorithm. What is the 
best compromise between approximation quality, 
execution time, and number of vertices needed to 
approximate the boundary. 

2. The distance of the corner endpoints A and C 
(Fig. 12) which is currently defined as 10 
pixels. Larger values will enhance inaccuracies 
in the edge approximation and smaller values will 
result in more similar values for the coordinates 
of the corner endpoints. 

3. The maximum angle deviation between the image and 
model local features exterior angle which is one 
of the two feature compatibility rules. 
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4. The bin size of the rotational parameter 
accumulator array currently set to 4 degrees. 

5. The consistency criterion of the Tx translation 
parameter. Consistency is given if the 
difference between the current value of Tx and 
the average value of Tx for this rotation cluster 
is less than 10 pixels. 

6. The weights used in equation (3-30) to compute 
the total hypothesis score by combining the 
individual corner and the hole scores. 

7. The hypothesis acceptance threshold value 
currently set to 70 %. 

Most of these parameters have been determined individually 

without looking at the interrelationships. Currently three 

parameters (the fit criterion threshold value, the angle 

deviation parameter, and the hypothesis acceptance 

threshold) can be modified by the user without recompiling 

the program. 

Since the quality of the local feature identification 

algorithm depends mostly on the performance of the boundary 

approximation algorithm, it would be interesting to 

implement another approach such as the one suggested by Beus 

and Tiu [59] and to compare both methods. 

These suggestions for further research identify one 

problem in the current machine vision research approach. A 

variety of individual researchers try to attack the whole 

problem at once instead of concentrating at smaller tasks in 

order to develop more sophisticated image processing 

functions. One reason can be seen in the lack of public 

image processing software. Research papers usually do not 

publish the code. At best they provide a good outline of 
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the algorithm being used. In order to start working in this 

field one has to redevelop all machine vision software 

components. 
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